On Fully Discrete Schemes for the Fermi Pencil-beam Equation

نویسندگان

  • MOHAMMAD ASADZADEH
  • ALEXANDROS SOPASAKIS
چکیده

We consider a Fermi pencil beam model in two space dimensions (x; y), where x is aligned with the beam's penetration direction and y together with the scaled angular variable z, correspond to a bounded symmetric , transversal cross section. We study some fully discrete numerical schemes using the standard Galerkin and streamline diiusion nite element methods for discretization of the transversal domain combined with backward Euler, Crank-Nicolson and discontinuous Galerkin methods for discretization in the penetration variable. We derive stability estimates for the semidiscrete problems and, assuming suuciently smooth exact solution, we show optimal a priori error estimates. Numerical examples presented in some canonical cases, with data approximating Dirac function, connrm the expected performance of the combined schemes. 1. introduction The Fermi pencil beam equation is derived from the Fokker-Planck equation through an asymptotic expansion. The Fokker-Planck equation itself is yet another asymptotic limit of the linear Boltzmann equation, see 6]. The assumption of forward-peaked scattering, in a transport process, comprises the backbone of the derivation of both equations. We study some fully discrete schemes for the numerical solution of a pencil beam

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation

We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...

متن کامل

On the Stability of Characteristic Schemes for the Fermi Equation

We study characteristic schemes for a model problem for the Fermi pencil beam equation. The objective is twofold: (i) To design eecient and accurate numerical schemes based on the principle of solving a particle transport problem, exactly, on each collision free spatial segment combined with a projection on each collision site, from a pre collision angle and energy coordinates (AE) to a post co...

متن کامل

On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.

Electron beam dose calculations are often based on pencil beam formulas such as the Fermi-Eyges formula. The Fermi-Eyges formula gives an exact solution of the Fermi equation. The Fermi equation can be derived from a more fundamental mathematical model, the linear Boltzmann equation, in two steps. First, the linear Boltzmann equation is approximated by the Fokker-Planck equation. Second, the Fo...

متن کامل

On Convergence of the Streamline Diffusion and Discontinuous Galerkin Methods for the Multi-dimensional Fermi Pencil Beam Equation

We derive error estimates in the L2 norms, for the streamline diffusion (SD) and discontinuous Galerkin (DG) finite element methods for steady state, energy dependent, Fermi equation in three space dimensions. These estimates yield optimal convergence rates due to the maximal available regularity of the exact solution. Here our focus is on theoretical aspects of the h and hp approximations in b...

متن کامل

Digitally Excited Reconfigurable Linear Antenna Array Using Swarm Optimization Algorithms

This paper describes the synthesis of digitally excited pencil/flat top dual beams simultaneously in a linear antenna array constructed of isotropic elements. The objective is to generate a pencil/flat top beam pair using the excitations generated by the evolutionary algorithms. Both the beams share common variable discrete amplitude excitations and differ in variable discrete phase excitations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000